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a b s t r a c t 

Online multi-object tracking needs to overcome the intrinsic detector deficiencies, e.g., missing detections, 

false alarms, and inaccurate detection responses, to grow multiple object trajectories without using fu- 

ture information. Various distractions exist during this growing process like background clutters, similar 

targets, and occlusions, which present a great challenge. We in this work propose a method for learn- 

ing a distractor-aware discriminative model that can handle continuous missed and inaccurate detection 

problems due to the occlusion or the motion blur. To deal with target appearance variations, a relational 

attention learning mechanism is proposed to capture the distinctive target appearances by selectively 

aggregating features from history states with weights extracted from their appearance topological rela- 

tionship. Based on the discrimination model, a multi-stage tracking pipeline is designed for automatic 

trajectory initialization,propagation, and termination. Extensive experimental analyses and comparisons 

demonstrate its state-of-the-art performance on widely used challenging MOT16 and MOT17 benchmarks. 

The source code of this work is released to facilitate further studies on the multi-object tracking prob- 

lem. 1 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-Object Tracking (MOT), a.k.a Multi-Target Tracking (MTT),

s an important problem in computer vision with many practical

pplications such as video surveillance, autonomous driving and

uman-computer interaction [1] . The goal of multi-object tracking

s to determine the trajectories of multiple objects simultaneously

y localizing and associating targets with the same identity across

ultiple frames. It remains a very challenging problem due to fac-

ors like target appearance variations, irregular object motions, par-

ial and full object occlusions [2] . 

A MOT algorithm often relies heavily on object detector to au-

omatically initialize, propagate and terminate object trajectories.

he dominant tracking-by-detection strategy [3,4] applies an ob-

ect detector at each frame first and then associates detection re-

ponses across frames to generate the object trajectories. Benefited
∗ corresponding author at: University of Chinese Academy of Sciences, Beijing, 

hina. 

E-mail address: jlxing@nlpr.ia.ac.cn (J. Xing). 
1 Implementation code link: https://github.com/ZongweiZhou1/DDLTracker 

b  

a  
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031-3203/© 2020 Elsevier Ltd. All rights reserved. 
rom the recent advances in deep detection models [5] , the object

etection performance has been significantly improved. However,

he detection results of existing models are far from perfection. As

hown in Fig. 1 2 , missing detection, false alarm, and inaccurate de-

ection response still occur frequently even with the state-of-the-

rt detection models. A MOT algorithm thus needs to overcome

hese intrinsic detector deficiencies to track targets under challeng-

ng situations like large pose variations, severe object occlusions,

nd complex target interactions. 

To handle these issues, global association based methods [6–

] generate trajectories in a batch mode by solving a global op-

imization problem. Those methods utilize the information from

oth the past and future simultaneously to suppress detection

oises occurred in the current frame and to smooth object trajecto-

ies across multiple frames. Though tracking in a batch mode typi-

ally achieves better performance, it is non-causal and not applica-

le in online scenarios where a target identity must be determined

t the current time step. Without future information available, it
2 Data from https://motchallenge.net/results/MOT17Det/ 

https://doi.org/10.1016/j.patcog.2020.107512
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107512&domain=pdf
mailto:jlxing@nlpr.ia.ac.cn
https://github.com/ZongweiZhou1/DDLTracker
https://motchallenge.net/results/MOT17Det/
https://doi.org/10.1016/j.patcog.2020.107512
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Fig. 1. Exemplary detection failures in MOT challenge. In (a), the cases of false alarm, inaccurate detection and missing detection are demonstrated respectively. In (b), these 

three kinds of detection failures of different state-of-the-art detectors 2 are evaluated using MODA (Multiple Object Detection Accuracy), Precision and Recall. Best viewed in 

color. 
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is more challenging for online multi-object tracking algorithms to

grow target trajectories when it is continuously miss-detected or

occluded after several frames. 

Facing these challenges, this work proposes an online MOT al-

gorithm which learns a unified and multi-functional discrimina-

tion model to distinguish the target from both distracting back-

grounds and other neighboring or overlapping targets. Inspired by

the recent Siamese structure [9] , the discrimination model takes

two image samples as input and outputs a discrimination confi-

dence value as well as a similarity. This discrimination model is

firstly learned offline by distinguishing generic object samples from

other targets and background distractions with a distractor-aware

loss function. To handle the target appearance variations caused

by factors like pose variations, object occlusions and target interac-

tions, the discrimination model is further enhanced by a relational

attention procedure, which introduces a lightweight self-attention

mechanism by capturing the trajectory feature globally from the

history states stored in a temporal window and aggregating them

via the weighted fusion learning. 

By incorporating the object detection responses and the pro-

posed discrimination model, a multi-stage tracking pipeline is de-

signed for automatic trajectory initialization, propogation, and ter-

mination. The discrimination model builds for each initialized tar-

get a dedicated appearance model, which is efficiently updated on-

line to preserve its discrimination ability. This dedicated appear-

ance model serves not only as a single object tracker to grow the

target trajectory in the scenario that the target is isolated from

other targets with inaccurate detection response or even miss-

detected but also as a discriminator to distinguish against distrac-

tions from the backgrounds and other neighboring or occluding
 m  
argets. Its predictions are used to replace missing detection re-

ponses and refine inaccurate responses, and its confidence scores

revent tracking from drifting in the long term. To summarize, this

ork incorporates the merits of single object tracker and offline

bject detector and overcomes their deficiencies to present a new

nline MOT algorithm with distractor-aware discrimination learn-

ng. Its main contributions are threefold. 

• A distractor-aware discrimination learning model is proposed

to facilitate online multi-object tracking to better differentiate

one target from other targets and semantic backgrounds in the

scenes. 
• A relational attention learning mechanism is introduced to han-

dle appearance variations of targets caused by large pose varia-

tions, object occlusions, and target interactions. 
• A multi-stage tracking strategy is established within a temporal

sliding window which leverages the object detection responses

and tracker predictions to deal with trajectory drifting. 

Based on the above technical contributions, this study has de-

eloped an effective online MOT system. Extensive experimental

nalyses and evaluations on the widely used challenging MOT16

nd MOT17 benchmarks demonstrate the effectiveness of the pro-

osed approach. To facilitate further studies on the online multi-

bject tracking problem, we will release the source code and

rained models of the proposed MOT approach. 

. Related work 

Multi-Object Tracking . Tracking-by-detection is becoming the

ost popular strategy for multi-target tracking with the develop-
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ent of object detection methods. The main idea is that trajecto-

ies are generated by associating the detected object hypotheses

roduced by an off-the-shelf object detector. Many methods tackle

he task in a batch mode by formulating tracking as a global opti-

ization problem, such as multicut [7] , continuous-discrete energy

inimization [10] , to name a few. These approaches utilize infor-

ation from both the past and future frames together to handle

etection failures. However, tracking in the batch mode is not suit-

ble for time-critical applications in the real world. In contrast, on-

ine MOT methods rely only on the information up to the current

rame to estimate trajectories. These methods can be divided into

wo categories: probabilistic inference [11] and deterministic opti-

ization [12] . Such online tracking methods are more sensitive to

oisy detections, and detection failures seriously affect the track-

ng performance. In this work, we integrate merits of object detec-

ion and single object tracker to deal with detection failures. Sin-

le object tracker can refine the detection and compensate for the

issing detection, and confident detection can remedy the tracker

rifting. 

Object Detection in MOT . Object detection, especially pedes-

rian detection, receives considerable interests in MOT as it is the

rst and a critical step for tracking-by-detection methods. Tradi-

ional pedestrian detectors, such as ACF [13] and DPM [14] , exploit

arious filters on hand-craft features with sliding window strategy

o localize objects. Recently, object detection is dominated by the

NN-based methods [5] . These methods use deep features rather

han hand-craft features to classify and localize each target simul-

aneously. CNN-based detectors outperform significantly traditional

etectors both on speed and accuracy. However, even the state-

f-the-art CNN-based detectors still inevitably encounter detection

ailures in practice, especially in crowd scene for MOT, as targets

nteract with others frequently and the environment sometimes is

xtremely cluttered. Detection failure is one of the most challeng-

ng problem for tracking-by-detection methods. Our work focuses

n applying a single object tracking method to handle detection

ailures including false alarm, missing detection and inaccurate lo-

alization. 

Single Object Tracker in MOT . Thanks to the significant

rogress in Single Object Tracking (SOT) field in recent years, sin-

le object trackers have been introduced into MOT task in several

revious works. Compared with single target tracking, multi-target

racking has several difficulties. First, the number of targets is un-

ertain, and the start and end points of the trajectory are uncer-

ain. Second, serious occlusions occur between the targets. Finally,

here may be strong similarities between the targets. Therefore,

ingle-target trackers cannot be directly applied to multi-target

racking tasks. Xiang et al. utilizes Markov Decision Process (MDP)

15] to track targets in tracked state with optical flow based on

he TLD tracker [16] . STAM [17] exploits a spatial-temporal atten-

ion mechanism to handle drift issues via regarding all the detec-

ions as SOT proposals. DMAN [18] directly applies the ECO tracker

19] from SOT with a cost-sensitive loss and designed a spatial-

emporal network for data association when SOT tracker is consid-

red losing the target. However, all these methods are combined

ith online-updating SOT tracker which is slow in speed and costs

 lot of memory. To make matters worse, there are not enough

amples to update each tracker, causing the trajectory to drift grad-

ally. 

In this work, we propose an online MOT algorithm based on

he offline training siamese SOT tracker, SiamRPN [20] . Siamese

etwork-based tracking method [9] contains two CNN branches:

ne for the template target and the other for the search region,

he two branches share the same architecture and parameters. Dur-

ng tracking, the two branches are fed into the cross-correlation

ayer for sliding window evaluation. Li et al. [20] fuse a Siamese

etwork and Region Proposed Network (RPN) detection method to
ormulate tracking task as a one-shot detection problem and get

he top tracking performance with a high speed. To enhance the

obustness and accuracy of existing Siamese-based trackers, Zhang

t al. [21] propose new residual modules to eliminate the negative

mpact of padding. In SiamRPN++ [22] , a new architecture is pro-

osed to perform layer-wise and depth-wise aggregations, which

educes the model size and further increase the speed. There

re three main changes when we tailor the SiamRPN tracker for

OT in this paper. Firstly, a bi-direction correlation-based track-

ng structure is exploited in each candidate associate pair to re-

uce the potential for tracking drift. Secondly, a distractor-aware

iscriminative loss function is proposed to handle distractors. Fi-

ally, a relationship attention mechanism is combined to alleviate

he occlusion problem. 

. Proposed online MOT algorithm 

As a state-of-the-art single object tracking method, SiamRPN

an grow trajectory with bounding box regression from region pro-

osals. However, it does not perform well in the cases when some

rajectories are close and interfere with each other or a trajectory

s continuously occluded after several frames. Based on these con-

iderations, a distractor-aware discrimination learning model inte-

rating siamese structure is proposed to compensate missing de-

ection, smooth inaccurate detection, and discriminate distractors

imultaneously. 

.1. Distractor-aware discrimination learning 

The schematics of the proposed discrimination model is shown

n Fig. 2 . It takes two image samples as input and outputs a dis-

rimination confidence as well as a similarity map. The discrimina-

ion confidence is used to discriminate confusing targets while the

imilarity map benefits to reflect the samples’ spatial relationship.

he feature extractor f θ is a modified ResNet-50 structure within

hich the first four stages are retained and the output stride is re-

uced to 8 to obtain a higher spatial resolution. The blocks h φ and

 w 

in the Refining Module (RM) are both two 1 × 1 convolutional

ayers with {256, 2 k } and {256, 4 k } channels respectively, with k

eing the number of proposals. The cross correlation operation in

M not only refines the candidate bounding box, but also provides

he ROI to extract features for binary classification, i.e. , whether the

ssociation is correct or not. 

In order to explain the loss function more clearly, we first

ntroduce the meaning of the notations used in the loss func-

ion. The Discrimination Module (DM, c.f. Fig. 2 ) outputs the pre-

icted cofidence score c . The ground-truth c ∗ represents whether

he pair of image samples belong to the same target. The output

p = [ p x , p y , p w 

, p h ] (c.f. Fig. 2 ) of S and p ∗ = [ p ∗x , p ∗y , p ∗w 

, p ∗
h 
] denote

he predicted probability and the ground-truth label that the cor-

esponding anchor is responsible for refining the target position.

he output t of B is a vector representing 4 parameterized coordi-

ates of the bounding box predicted by each positive anchor while

 

∗ is that of associated ground-truth. The parameterization method

s the same as RPN [23] : 

p x = 

g x − a x 

a w 

, p y = 

g y − a y 

a h 

p w 

= log 
g w 

a w 

, p h = log 
g h 
a h 

, (1) 

here g x , g y , g w 

, g h represent the center position and size of the

round truth bounding box while a x , a y , a w 

, a h denote that of an

nchor. 

The loss function of our model consists of three components for

ifferent tasks, the box classification L , the box regression L 
bc br 
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Fig. 2. Schematic of the proposed discrimination model. A pair of Region-of-Interests (RoIs) p, q with their wrappers ˆ p , ̂  q and candidate search regions p̄ , ̄q are input to 

the network. The template-candidate tuples ( ̂ p , ̄q ) , ( ̂ q , ̄p ) are processed by a Siamese network respectively, where the feature maps of the template F pt , F qt ∈ R 15 ×15 ×256 are 

used to provide a refined RoI ( q r , p r ) for the candidate search feature maps F qs , F ps ∈ R 31 ×31 ×256 with the Refining Module (RM). Compact features extracted from the feature 

maps with the help of RoIs ( p, q r , q, p r ) are concatenated to form a 1024-dimensional feature vector, which is further exploited in the Discrimination Module (DM) to 

discriminate whether p and q are of the same identity. c © denotes the concatenation operator. ROIP means ROI Pooling. In RM, ∗
d denotes depth-wise cross correlation. 

The cross correlation maps C ∈ R 17 ×17 ×256 are fed to two convolution branches to generate a confidence map S ∈ R 17 ×17 ×2 k and to refine bounding boxes B ∈ R 17 ×17 ×4 k . The 

bounding box with the highest confidence score is selected as the refined target. 
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and the association classification L ac as follows: 

L = L bc (p, p ∗) + λ1 · L br (t , t ∗) + λ2 · L ac (c, c ∗) , (2)

where λ1 and λ2 are balance parameters. Although the box regres-

sion L br and box classification L bc are motivated by RPN, there

are some differences when it comes to MOT. In RPN, the anchor

which has the highest IoU overlap with a ground-truth box or an

IoU overlap higher than 0.7 with any ground-truth box is selected

as a positive sample, while the negative samples are the anchors

whose IoU values are lower than 0.3. The model is prone to just

discriminate foreground from the non-semantic background as the

training procedure is dominated by easy negative samples, which

is very disadvantageous for multi-target tracking task that needs to

distinguish between different foreground targets. 

Hence, in the proposed distract-aware loss, for the box classi-

fication, more hard negative samples, such as other confusing tar-

gets and ignored anchors (IoU ∈ [0.3, 0.7]) are punished, for the

box regression, the variation of proposals associated with the same

target is also minimized to suppress the occurrence of diffusion

box. The new losses can be formulated as follows: 

L bc (p, p ∗) = (1 − α) L 

e 
bc (p, p ∗) + αL 

h 
bc (p, p ∗) 

L br (t , t ∗) = (1 − β) L 

s 
br (t , t ∗) + βL cs (t) . (3)

Both L 

e 
bc 

and L 

h 
bc 

are binary cross entropy losses, where the for-

mer acts on positive foreground and easy negative samples like

RPN and the latter acts on the hard-negative samples. The hard-

negative samples are selected from other foreground with differ-

ent identity or ignore anchors who have higher responses, to en-

force the model to extract more discriminative features. L 

s 
br 

is

the smooth L 1 loss on all positive samples for box regression and

L cs (t) = E ‖ t − t̄ ‖ 1 intends to ensure all the positive proposals are

close and compact, where t̄ means the expectation of the predicted

parameterized coordinates and E is the expectation operator. The

close and compact constraint not only benefits to the subsequent

Non-Maximum Suppress (NMS) operation, but also helps to make

the features more discriminative. The α and β are parameters to

balance different com ponents. These two im provements are impor-

tant for solving the frequent ID switches in MOT tasks. 
Furthermore, an association classification loss L ac , the cross-

ntropy loss over two classes, is also adopted in Eq. (2) to dis-

inguish whether the pair of image samples belong to the same

arget. Given a new frame, we name the trajectory where at most

ne detection overlapping with its prediction as isolated trajectory

nd competitive trajectory otherwise. In training, only competitive

rajectories are collected to generate positive and negative samples

o train the association classifier. 

.2. Relational attention learning 

The target appearance often varies from frame to frame due

o factors like object occlusions, pose variations, and target inter-

ctions. To handle these variations, history observations are com-

only used to character trajectory feature. The most common

ractice is to normalize the history features with the weights en-

oding the similarities between them and the candidate. How-

ver, the relationship among history observations is typically over-

ooked. The relationship can weaken the influence from outliers

o update the trajectory feature more robustly. To this end, a

ightweight self-attention mechanism is introduced in our model

o capture the relationship among history observations. Instead of

cquiring the importance of history sample through its similarity

ith current sample, we learn the dependence of the trajectory on

ach sample online in a self-attention manner, thereby suppressing

he negative effects of noise points. 

Specifically, as illustrated in Fig. 3 , for each trajectory, given

 history observations with feature maps F 1 , a spatial Gaussian

eight is first applied at each channel to reduce the effect of sur-

oundings. The features are further compacted with a 1 × 1 convo-

ution layer. A global max-pooling operator is followed to abstract

nvariant features P ∈ R 

N×C ′ . A relation matrix is calculated by mul-

iplying P with its transpose. The row-normalized relation matrix

 ∈ R 

N×N is obtained as 

 i j = 

exp ( P i · P 

T 
j 
) ∑ N 

k =1 exp (P i · P 

T ) 
, (4)
k 
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Fig. 3. The details of the Relational Attention Module. MP is the global max-pooling 

operator. R, T denote reshape and transpose operators respectively. � represents the 

matrix multiplication and � means element-wise addition. 
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c  
here D i j indicates the j th observation’s impact on the i th obser-

ation. The relation map D is then reshaped as a vector and fed

nto two fully-connected layers ( N 

2 × N 

2 , N 

2 × N ) followed by a

oftmax layer to obtain the attention score w ∈ R 

N of each obser-

ation. 

The final output (trajectory kernel) K ∈ R 

N×C×H×W is obtained

y 

 = 

N ∑ 

i =1 

w i F 1 i . (5) 

o ensure that the trajectory kernel updates smoothly, a momen-

um term is used in the update process as K 

t = ηK 

t−1 + (1 − η) K ,

here η = 0 . 95 is the momentum coefficient. 

In training, before the unified end-to-end training, relational at-

ention module is first pretrained using specified samples gener-

ted from competitive trajectories. Feature maps of N − k observa-

ion set S N−k in the same trajectory are extracted using f θ , while

he other k feature maps are extracted from observations set S k of

ther trajectories. k is a random integer ranging from 0 to 0.3 × N .

he label of observation o is 1 
N−k 

if o ∈ S N−K , and 0 otherwise. 

.3. Multi-stage tracking 

The proposed discrimination model can distinguish the tar-

et from both distracting background and other neighboring or

verlapping targets, which is essential to grow trajectory. And

rajectory propogation is a critical step in multi-target tracking.

enefited from the discrimination model, a multi-stage tracking

ipeline (shown in Fig. 4 ) is designed in this work to track mul-

iple targets in an online mode. 

Considering that isolated trajectory and competitive trajectory

ace large differences in growing, we adopt different tracking

trategies for isolated and competitive trajectories. In the first

tage, each alive trajectory takes its current bounding box as can-

idate region and refines the bounding box using RM branch. For

he isolated trajectory, the refined bounding box is appended as

ew observation if the trajectory’s confidence (as Eq. (6) ) is larger

han a threshold τ p . 

 T k = 

{∑ n p 
i 

S i 
n p 

· (2 − exp (ε
√ 

n p )) , if n p > 0 

1 , else 
, (6) 

here n p is the time of continuous tracking in the first stage and

 i denotes the refining confidence in the i th growth. ε is a balance

arameter. Empirically, the ε is related to the allowed maximum

umber N max of consecutive failed matches, ε ≈ log (2) / 
√ 

N max . ε =
 . 1 in all our experiments. 
In the second stage, for competitive trajectories, their refining

ounding box and overlapped detections after NMS are collected

s candidates. The similarities between trajectory and the candi-

ates are calculated using the association classifier branch of the

iscrimination model. Then the Hungarian algorithm is applied at

he association similarity matrix to grow competitive trajectory. In

he last stage, the remaining detections are further assigned to the

ntracked trajectories based on IoU between detections and tracker

redictions with a threshold τ iou . 

After data association, each untracked trajectory is considered

s lost in the current frame and a new trajectory is initialized for

ach unmatched detection with a high response confidence. To al-

eviate the influence of false detection, any new trajectory will be

eleted once it is lost in any of the first τ i frames. The trajectory

ill be terminated if it keeps lost for over τ t successive frames or

xits the field of view. For the trajectory kernel update, N history

bservations are selected as follows, 

 i = arg max t −iτt < j≤t −(i −1) τt 
Q o j , i = 1 , . . . , N , (7)

here Q o j is the detection confidence of o j . 

. Experiments 

In this section, we first introduce the experiment settings in-

luding datasets, evaluation metrics and the implementation de-

ails in Section 4.1 . The proposed distractor-aware loss, the rela-

ional attention module and the multi-stage tracking strategy are

hen analyzed respectively in Section 4.2 . Finally, in Section 4.3 ,

ur proposed online MOT algorithm is compared with the state-

f-the-art methods on the public MOT benchmarks. 

.1. Experiment settings 

Datasets . We evaluate our online MOT algorithm on the pub-

icly available MOT16 and MOT17 benchmark datasets [24] . The

OT16 dataset consists of 14 video sequences, 7 for training and

 for testing respectively, and provides public detections derived

rom DPM [14] . The MOT17 dataset shares the same video se-

uences with MOT16 and provides another two sets of public de-

ections (by Faster R-CNN [23] and SDP [25] ) for more comprehen-

ive evaluation. We use the training sequences in MOT16 bench-

ark for model training and investigation. Specifically, two se-

uences, MOT16-09 and MOT16-10, are selected for validation and

he remaining ones are used for training. Public detections are

sed in all experiments for fair comparison. 

Evaluation Metrics . We adopt the widely used CLEAR MOT

etrics [26,27] to measure the performance of the proposed on-

ine MOT algorithm. These metrics include Multiple Object Track-

ng Accuracy (MOTA ↑ ), Mostly Tracked targets (MT ↑ , the ratio

f ground-truth trajectories that are covered by a track hypothesis

or at least 80% of their respective life span), Mostly Lost targets

ML ↓ , the ratio of ground-truth trajectories that are covered by

 track hypothesis for at most 20% of their respective life span),

he number of False Negatives (FN ↓ ), the number of False Posi-

ive (FP ↓ ), the number of ID Switches (IDS ↓ ) and the number of

ragments (Frag ↓ ). Additionally, ID F1 score [28] (IDF1 ↑ ), which

enotes the ratio of correctly identified detections over the aver-

ge number of ground-truth and computed detections, is also em-

loyed to measure the identity-preserving ability of trackers. Here

 denotes that higher scores indicate better performance, and ↓
enotes lower scores indicate better performance. Metrics of ACC,

FI, EFP and IoU are used in ablation study, which will be illus-

rated accordingly. 

Implementation Details . The proposed algorithm is imple-

ented with PyTorch. During the further training phase of the dis-

rimination model, the feature extraction layers f θ are fixed and
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Fig. 4. Pipeline of the proposed MOT algorithm. For each frame, targets are tracked in three stages, i.e. , growing isolated trajectories (S1), growing competitive trajectories 

(S2) and associating untracked trajectories with unassigned detections using IoU (S3). In S1, the RM branch is used to locate new locations which helps to suppress misses 

or inaccurate detections. The DM branch is used in S2. Facing the competitive trajectories, the bi-directory track in DM provides stronger distinguishing information, which 

helps to suppress ID switches. Trajectory initialization, propogation and termination are handled in a management agency at each time step. For each tracked track, relational 

attention is used in the management agency to online update its template to adapt to apparent changes. 
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the remaining parameters are fine-tuned on MOT training dataset.

The ratios and scales of the anchors used in the RM are set as {2,

3} and {7, 9} respectively. The learnable weights of relational at-

tention module are initialized with xavier initialization [29] . Any

two observations which have the same identity and with tempo-

ral distance less then 50 frames are paired as a sample. The net-

work is trained for 25 epochs with the Stochastic gradient descent

(SGD) optimizer. Learning rates for region proposal and relational

attention module are initialized as 1 e − 4 and 1 e − 2 respectively.

As training proceeds, they are reduced to their 1/10 quantity at the

10th and 18th epoch. 

For training data preparation, there are 82,805 samples in each

epoch for training and 20,0 0 0 samples for validation. Any two ob-

servations with the same identity and with temporal distance less

than 50 frames are paired as a sample. Data augmentation, such as

color jitter, image horizontal flip, and random displacement noise

of search region is used in training. 

For the parameters setting, in training, the balance parameters

in Eq. (2) are experimentally set as λ1 = 1 , λ2 = 2 in all the evalu-

ations and the parameters α, β are both set as 0.4 when the pro-

posed model is evaluated on MOT benchmark. In the data asso-

ciation, the thresholds for alive trajectory is set as τp = 0 . 8 . The

balance parameter ε in Eq. (6) is set as 0.05 and N = 8 historical

states are collected to extract the trajectory feature. We set τiou =
0 . 4 to suppress the overlapped detections. The trajectory initial-

ization threshold τ i is set as 2 and the termination threshold τ t is

set as 30. Multi-parameter is a general problem of MOT approaches

[7,17,18,30–33] . Most of the common parameters in our method are

set as other approaches and without further tuning, the regulariz-

ers in loss function will be further analyzed in Section 4.2 . 

4.2. Ablation study 

The Advantage of Distractor-aware Loss . As shown in Eq. (3) ,

we name L 

h 
bc 

and L cs as repulse and consistency terms. The L 

h 
bc 

pushes the hard negative samples away from the positive samples

and the L cs concentrates the predictions of the positive samples

more concentrated. To better evaluate the effects of these two loss

components, we report the performance regarding L 

h 
bc 

and L cs by

varying the balance parameters α and β in Table 1 . 

In the evaluation, given a template and a search area, it is

deemed as a correct prediction if the IoU between the ground-

truth and the regression is greater than 0.7. We use ACC to de-
ote the ratio of correct predictions. The metric of EFI denotes the

atio of error prediction from ignored anchors in all error predic-

ions, which means some negative samples from ignored anchors

re mis-classified as positive. The metric of EFP denotes the ratio

f error prediction from positive anchors in all error predictions,

hich means the classification is right while the regression is in-

ccurate severely. α = 0 means only the original RPN loss is used

hile α = 1 means the samples from the ignored anchors rather

han the negative anchors are exploited in training. We evaluate

he impact of different β on performance at α = 0 . 4 and the per-

ormance of different α at β = 0 . 4 in Table 1 . It can be concluded

hat, the best ACC is achieved when α = 0 . 4 and the best EFI is ob-

ained when α = 1 . 0 . This demonstrates that the repulse loss term

s more effective to distinguish negative samples from ignored an-

hors. Further more, the ACC is further improved and the EFP is

educed when the consistency loss is used. However, when β is

reater than 0.4, the performance is degraded. The reason behind

his case is that the loss function pays more attention to regression

onsistency rather than accuracy. In the extreme case, β = 1 for

xample, where the regression accuracy is almost totally ignored,

he ACC degrades to nearly 0. Note that EFI and EFP are not nec-

ssary to be consistent with ACC because the multiple loss terms

nfluence each other. 

We further analyze the proposed loss using MOT metrics along

ith metrics of ACC and IoU which means the average overlap

etween correct regressions and targets. To better investigate the

nfluence regarding only L 

h 
bc 

and L cs in Eq. (3) , we exclude the

nfluence from the relational attention module by removing this

odule when we construct baseline variants. Specifically we com-

are four variants. The first is a plain one with neither L 

h 
bc 

nor

 cs , i.e. , the box regression loss L br and box classification loss L bc 

n Eq. (2) are the same as in RPN. The second and the third ones

re counterparts with either L 

h 
bc 

or L cs . The fourth one is a vari-

nt with both L 

h 
bc 

and L cs . A tick mark in Table 2 indicates the

orresponding loss term is included in the counterpart. Results in

able 2 suggest that both L 

h 
bc 

and L cs contribute to improve the

odel. For example, the MOTA, IoU, IDF1, and ACC values increase

ith varying degrees. The repulse term L 

h 
bc 

is especially more ef-

ective, as the results indicate. 

The Advantage of Relational Attention (RA) . Fig. 5 shows the

isualization results of the self-attention mechanism. (a) demon-

trates eight stored historical states and (b) is the search area of

he target in the current frame. The attention weights obtained re-
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Table 1 

Analysis of the proposed distractor-aware loss with different values of α and β . 

Parameter Metric 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

α@(β = 0 . 4) ACC(%) 84.20 85.32 85.50 86.43 86.52 86.09 85.93 85.83 85.46 85.10 82.19 

EFI(%) 13.71 11.72 11.31 10.54 10.76 10.99 9.96 11.08 9.90 8.86 7.69 

β@(α = 0 . 4) ACC(%) 86.52 87.12 87.08 87.04 87.32 86.29 85.62 85.57 85.72 84.02 0.03 

EFP(%) 10.76 7.61 9.83 11.12 10.56 11.45 12.03 16.08 17.99 15.71 86.53 

Table 2 

Ablation study results on the validation set in terms of different configurations of loss terms and the 

Relational Attention module (RA). 

Method L h ac L cs RA ACC(%) IoU MOTA(%) IDF1(%) IDS Frag 

ablation models 84.24 0.7138 45.8 47.2 158 353 √ 

87.26 0.7154 46.7 49.9 147 322 √ 

87.15 0.7092 45.9 47.4 164 337 √ √ 

87.48 0.7169 47.4 51.3 137 305 √ 

88.51 0.7267 47.5 52.1 102 297 

final model 
√ √ √ 

90.90 0.7456 48.9 54.6 91 299 

Fig. 5. Visualization of relational attention module. (a) presents eight historical states of an object. (b) shows searching area of the target. (c) compares the attention weights 

between the historical states and the search candidate by the local mode (without the relational attention module) and the global mode (with the relational attention 

module). The attention weights in global mode are more consistent than those in local mode. 
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pectively in global and local modes are compared in (c). Global

ode means the attention weights are obtained by the relational

ttention module, while local mode obtains the attention weights

y normalizing the similarities between each historical state and

he candidate. It is not difficult to find from (c) that, because of

rror associations, the weights of the 7th and 8th historical states

btained by the local mode are extremely higher than other values.

his results in that the cues of these two observations are domi-

ated when aggregating observations with these weights to char-

cter the trajectory. Therefore, the candidate in (b) will be assigned

o the trajectory leading to identity switch in this case. 

Different from the weights obtained in local mode, weights

chieved by self-attention mechanism encode the relationships

mong all the observations to evaluate the importance of each

bservation to the trajectory more robustly as shown in (c). The

eighted average of the historical samples is used as the current

eature of the trajectory, to measure the matching degree between

he current target and the trajectory. Thus, the relational atten-

ion module can suppress casual mismatches to better collect his-

orical information globally. For the example in Fig. 5 , the black

uit man will be considered temporarily lost in (b) as the simi-

arity between the target and the trajectory feature after fusion is

mall, thus avoiding the exchange of track ID with the light shirt

an. 

Quantitative results in Table 2 also validate that the proposed

elational attention module is effective. Regardless of whether
istractor-aware loss terms are used, the relational attention mod-

le improves model performace. In particular, the better values of

DF1 and IDS demonstrate the benefits from the relational atten-

ion module in reducing identity switch in MOT tracking. 

Exemplar tracking results are shown in Fig. 6 . The detection of

rajectory #2 is missing but the proposed model can track it suc-

essfully with the RM. Trajectory #3 and #5 are occluded by trajec-

ory #2 in frame #36, but the trajectories’ identities are preserved

ith the help of association classifier branch. 

The Advantage of Multi-stage Strategy . In addition to the clas-

ification branch and the relational attention learning, the multi-

tage strategy also plays an important part in out multi-target

racking model. To analyze the impact of each step, the ablation

xperiments have been conducted on MOT16 training set as shown

n Table. 3 , where DAL is the abbreviation of Distractor-Aware

earning. 

Though a distractor-aware siamese region proposal network

DaSiamRPN) is proposed in [34] for single object tracking, we

elect SiamRPN [20] tracker as the baseline. Compared with

iamRPN, the DaSiamRPN has two main improvements. On one

and, the data in the detection task is introduced to expand the

iversity of positive samples and improve the generalization abil-

ty of the model. On the other hand, different instances are used to

uild hard negative samples to improve the discriminability of the

odel. However, these two points are not helpful for MOT tasks.

irst of all, there is only one main category in the MOT bench-
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Fig. 6. Exemplar tracking results. The thin yellow boxes indicate the detection results, while the other boxes indicate the tracking results. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Analysis on multi-stage strategy. 

Method MOTA(%) MOTP (%) IDs IDF1(%) Frag FPS 

SiamRPN (naive) 28.9 44.4 2864 19.6 1935 10.4 

+ DAL 32.2 70.4 528 45.8 1027 4.7 

+ DAL + (S1,2) 44.1 72.3 511 47.1 785 4.3 

+ DAL + RA + (S1,2) 48.2 74.5 122 52.9 358 2.9 

+ DAL +RA +(S1,2,3) (final model) 48.9 75.9 91 54.6 299 2.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

r  

g  

i  

m  

s  

t  

b  

s  

a  

r  

t

4

 

a  

b  

T

 

i  

o  

m  

v  

p  

d  

a  

b  

t  

t  

d  

s  

F  

w  

c  

a  

i  

1  
mark, that is, pedestrian. Secondly, there are a large number of

crowded scenes in MOT, and how to distinguish different instances

in crowded scenes is the key to MOT, not to distinguish instances

from different scenes. Thus, SiamRPN is more appropriate to be our

baseline. The main different of applying distractor-aware siamese

networks in MOT and SOT is that it aims at different problems. In

SOT, the distractor-aware mechanism is used to increase the dis-

crimination of response score to sensitive to the target disappear-

ance, while in MOT, the distractor-aware mechanism is used to

distinguish different instances in crowded scenes. Specifically, for

each new frame, detections are first suppressed by predictions, and

then each detection whose confidence larger than 0.6 is consid-

ered to be the starting point of a trajectory to establish a specific

SiamRPN tracker. It is straight forward to find from Table. 3 that

naive SiamRPN tracker has a very poor performance on MOT task.

This is due to the poor ability of the proposed feature to discrimi-

nate between foregrounds, resulting in trajectory prone to drift and

frequent track id switch. After adding DAL, the extracted features

are better for the identification of the foreground, so tracking per-

formance is improved. (S1,2) means the first and second stages are

used in the method, i.e. the trajectories are divided into two cat-

egories, isolated and competitive, for tracking, and the detection

is not only used to create new trajectory, but also used to correct

the trajectory where the tracking drift occurs. We can find the first

two stages are benefit to significant improve MOTA and MOTP. To

further utilize the historical information handling the frequent ID

switch, RA is combined. It can be find the historical information

is important for reducing the ID switch, IDs has dropped from 511

to 122, and IDF1 has increased by nearly 4 percent. Our final pro-

posed method contains the single object tracker with distractor-

aware discrimination learning, the RA and the multi-stage tracking

strategy. 

By analyzing and comparing the experimental results in

Table. 3 , we get three conclusions. Firstly, naive SiamRPN alone

are not sufficient for robust application in multi-object scenarios

with many distractors, and discriminative features are necessary.

Secondly, RA is important for reducing ID switch. Lastly, the multi-

stage tracking strategy can well integrate the functions of each

module ( e.g. DAL, RA, Detections) to achieve better tracking per-
formance. w
In addition, we compare model speeds in the last column of

able 3 . It can be found that although the speed of SiamRPN can

each higher than 100 FPS in single target tracking, the speed is

reatly reduced in MOT task. This is mainly because each target

n MOT needs to create a SiamRPN tracker separately. The DAL

odule reduces speed further because the bi-directory tracking

trategy is used to make better use the sequence information in

he tracking process. The RA module needs to extract features and

uild the relationship topology map, which also brings time con-

umption. In the future work, we will process targets in one frame

t the same time instead of processing each target individually to

educe redundant operations and improve the tracking speed of

he model. 

.3. Evaluation on MOT benchmarks 

The proposed approach is compared with several state-of-the-

rt MOT methods on the test sets of both MOT16 and MOT17

enchmarks. Quantitative comparison results are presented in

ables 4 and 5 , respectively. 

For MOT16 dataset, our method achieves the best performance

n terms of MOTA and ML metrics and comparable results in terms

f IDF1 and FN values against the state-of-the-art online MOT

ethods. As the most comprehensive metric for MOT, the MOTA

alue obtained using our approach is even comparable with the

erformance of state-of-the-art offline methods ( e.g. , [35] ), which

emonstrates the effectiveness of the proposed method. In further

nalysis, we find our approach obtains a comparable IDF1 value

ut a higher IDS value. As the IDS is the total number of iden-

ity switches while IDF1 is the ratio of correctly identified de-

ections over the average number of ground-truth and computed

etections, it proves the relational attention module is capable of

uppressing casual associations. The under-performance of MT and

rag is mainly due to the adopted naive zero-order motion model

here the results in previous frame are directly used as current

andidates. Candidates with large deviations lead to a higher Frag

nd a lower MT. When a more complicated motion mode (5-order)

s adopted, the MT increases from 14.0 to 15.2 and Frag drops from

886 to 1780. More studies on the motion model will be our future

ork. 
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Table 4 

Evaluation results on MOT16. The best two results regarding each metric are marked by italic and bold 

respectively. 

Mode Method MOTA(%) IDF1(%) MT(%) ML(%) FP FN IDS Frag 

Offline LMP [7] 48.8 51.3 18.2 40.1 6654 86,245 481 595 

GCRA [35] 48.2 48.6 12.9 41.1 5104 88,586 851 1117 

FWT [36] 47.8 44.3 18.1 38.2 8886 85,487 852 1534 

NLLMPa [37] 47.6 47.3 17.0 40.4 5844 89,093 629 768 

ASTT [38] 47.2 44.3 16.3 41.6 4680 90,877 633 814 

MCjoint [39] 47.1 52.3 20.4 46.9 6703 89,368 370 598 

NOMT [30] 46.4 53.3 18.3 41.4 9753 87,565 359 504 

Online Ours 48.5 52.8 14.0 37.2 7525 85,657 782 1886 

MOTDT [31] 47.6 50.9 15.2 38.3 9253 85,431 792 1858 

AMIR [40] 47.2 46.3 14.0 41.6 2681 92,856 774 1675 

DMMOT [18] 46.1 54.8 17.4 42.7 7909 89,874 532 1616 

STAM16 [17] 46.0 50.0 14.6 43.6 6895 91,117 473 1422 

DCCRF16 [32] 44.8 39.7 14.1 42.3 5613 94,133 968 1378 

Table 5 

Evaluation results on MOT17. The best two results regarding each metric are marked by italic and bold respectively. 

Mode Method MOTA(%) IDF1(%) MT(%) ML(%) FP FN IDS Frag 

Offline FWT [36] 51.3 47.6 21.4 35.2 24,101 247,195 2985 6611 

MHT_DAM [33] 50.7 47.2 20.8 36.9 22,875 252,889 2314 2865 

EDMT17 [41] 50.0 51.3 21.6 36.3 32,279 247,297 2264 3260 

IOU17 [42] 45.5 39.4 14.7 40.5 19,993 281,643 5988 7404 

Online Ours 51.4 53.7 16.5 34.9 21,042 251,873 2319 5527 

MOTDT17 [31] 50.9 52.7 17.5 35.7 24,069 250,768 2474 5317 

HAM_SADF17 [43] 48.3 51.1 17.1 41.7 20,967 269,038 1871 3020 

DMAN [18] 48.2 55.7 19.3 42.7 26,218 263,608 2194 5378 
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Similarly, for MOT17, Table 5 shows that the proposed approach

utperforms the other state-of-the-art online MOT trackers regard-

ng MOTA and ML metrics and achieves the comparable perfor-

ance in terms of IDF1, FP and FN. 

The overall tracking speed of the proposed approach on MOT16

nd MOT17 testing sequences is about 2.5 and 2.2 fps using the

.2 GHz CPU and a TITAN X GPU without dedicated optimization

f the code. There are two main reasons for the slow tracking

peed. First, a single target tracking is created for each target, and

here is a lot of computation redundancy between the trackers.

econdly, in order to make better use the sequence information

n the tracking process, the use of bi-directory tracking in the dis-

rimination module has slowed down the speed even more. How

o speed up the tracking speed will be one of our future research

irections. 

. Conclusion 

In this work, we have proposed an online multi-target tracking

ethod which learns a distractor-aware discrimination model to

row each target either when it is continuously miss-detected or

ccluded after several frames. To handle the appearance variations,

 lightweight self-attention module has also been designed to cap-

ure the distinctive target appearances by selectively aggregating

eatures from history states with weights extracted from their ap-

earance topological relationship. With the discrimination model,

 multi-stage tracking strategy is further designed for multi-target

racking. Experimental results on public MOT16 and MOT17 bench-

ark datasets verify the effectiveness of the proposed method. 

Although the effectiveness of the proposed method has been

erified on the MOT benchmark, at least two aspects which can be

xplored in the future to further improve the performance. Firstly,

here is still room for improvement in the MT and the Frag per-

ormance. More complex and accurate motion models will further

e studied to enhance the model. Secondly, the proposed model

ocates the current position of each target with the Siamese struc-

ure. In essence, each target has experienced the operations such
s cropping, wrapping, resizing, feature extraction and cross corre-

ation, resulting in a nearly proportional relationship between the

racking time and the number of targets. In addition, we will pro-

ess multiple targets in one frame at the same time instead of

rocessing each target individually to reduce redundant operations

nd improve the tracking speed of the model. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

cknowledgements 

This work is supported by the National Key R&D Pro-

ram of China (No. 2018AAA0102802, No. 2018AAA0102803, No.

018AAA0102800), the NSFC-general technology collaborative Fund 

or basic research (Grant No. U1636218), the Natural Science Foun-

ation of China (Grant No. 61672519, 61751212, 61721004), Beijing

atural Science Foundation (Grant No. L172051), the Key Research

rogram of Frontier Sciences, CAS, Grant No. QYZDJ-SSW-JSC040,

nd the National Natural Science Foundation of Guangdong (No.

018B030311046). 

eferences 

[1] X. Yan , I. Kakadiaris , A. Shah , Modeling local behavior for predicting social in-
teractions towards human tracking, PR 47 (4) (2014) 1626–1641 . 

[2] W. Luo, J. Xing, X. Zhang, X. Zhao, T.-K. Kim, Multiple object tracking: a litera-
ture review, arXiv: 1409.7618 (2014). 

[3] H. Wu , Y. Hu , K. Wang , H. Li , L. Nie , H. Cheng , Instance-aware representation
learning and association for online multi-person tracking, PR 94 (2019) 25–34 .

[4] K. Du Yong , V. Ba-Ngu , J. Moongu , A labeled random finite set online multi-
-object tracker for video data, PR 90 (2019) 377–389 . 

[5] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, Deep

learning for generic object detection: a survey, arXiv: 1809.02165 (2019). 
[6] S. Zhang , J. Wang , Z. Wang , Y. Gong , Y. Liu , Multi-target tracking by learning

local-to-global trajectory models, PR 48 (2015) 580–590 . 
[7] S. Tang , M. Andriluka , B. Andres , B. Schiele , Multiple people tracking by lifted

multicut and person re-identification, in: CVPR, 2017, pp. 3539–3548 . 

http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0001
http://arxiv.org/abs/1409.7618
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0003
http://arxiv.org/abs/1809.02165
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0005


10 Z. Zhou, W. Luo and Q. Wang et al. / Pattern Recognition 107 (2020) 107512 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

Z  

C  

p  

a  

A  

M

W  

C  

l  

r  

d  

t  

U

Q  

B  

C  

t

J  

X  

 

 

t  

G  

 

 

r  

a

W  

a  

w  

n  

n  

t

[8] X. Zhou , Y. Li , B. He , Game-theoretical occlusion handling for multi-target vi-
sual tracking, PR 46 (2013) 2670–2684 . 

[9] B. Luca , V. Jack , F.H. Joao , V. Andrea , H.S.T. Philip , Fully-convolutional siamese
networks for object tracking, in: ECCV, 2016, pp. 850–865 . 

[10] A. Milan , S. Roth , K. Schindler , Continuous energy minimization for multitarget
tracking, IEEE TPAMI 36 (1) (2014) 58–72 . 

[11] M.D. Breitenstein , F. Reichlin , B. Leibe , E. Koller-Meier , L. Van Gool , Robust
tracking-by-detection using a detector confidence particle filter, in: CVPR,

2009, pp. 1515–1522 . 

[12] W. Brendel , M. Amer , S. Todorovic , Multiobject tracking as maximum weight
independent set, in: CVPR, 2011, pp. 1273–1280 . 

[13] P. Dollár , R. Appel , S. Belongie , P. Perona , Fast feature pyramids for object de-
tection, IEEE TPAMI 36 (8) (2014) 1532–1545 . 

[14] P.F. Felzenszwalb , R.B. Girshick , D. McAllester , D. Ramanan , Object detection
with discriminatively trained part-based models, IEEE TPAMI 32 (9) (2010)

1627–1645 . 

[15] Y. Xiang , A. Alexandre , S. Silvio , Learning to track: Online multi-object tracking
by decision making, in: ICCV, 2015, pp. 4705–4713 . 

[16] Z. Kalal , M. Krystian , M. Jiri , Tracking-learning-detection, IEEE TPAMI 34 (7)
(2011) 1409–1422 . 

[17] Q. Chu , W. Ouyang , H. Li , X. Wang , B. Liu , N. Yu , Online multi-object tracking
using CNN-based single object tracker with spatial-temporal attention mecha-

nism, in: ICCV, 2017, pp. 4 836–4 845 . 

[18] J. Zhu , H. Yang , N. Liu , M. Kim , W. Zhang , M.-H. Yang , Online multi-object
tracking with dual matching attention networks, in: ECCV, 2018, pp. 366–382 . 

[19] M. Danelljan , G. Bhat , F. Khan , M. Felsberg , ECO: Efficient convolution operators
for tracking, in: CVPR, 2017, pp. 6638–6646 . 

[20] B. Li , J. Yan , W. Wu , Z. Zhu , X. Hu , High performance visual tracking with
siamese region proposal network, in: CVPR, 2018, pp. 8971–8980 . 

[21] Z. Zhang , H. Peng , Deeper and wider siamese networks for real-time visual

tracking, in: CVPR, 2019, pp. 4591–4600 . 
[22] B. Li , W. Wu , Q. Wang , F. Zhang , J. Xing , J. Yan , SiamRPN++: evolu-

tion of siamese visual tracking with very deep networks, in: CVPR, 2019,
pp. 4282–4291 . 

[23] S. Ren , K. He , B.G. Ross , J. Sun , Faster R-CNN: towards real-time object detec-
tion with region proposal networks, TPAMI 39 (6) (2017) 1137–1149 . 

[24] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, K. Schindler, MOT16: A benchmark for

multi-object tracking, arXiv: 1603.00831 (2016). 
[25] F. Yang , W. Choi , Y. Lin , Exploit all the layers: Fast and accurate CNN object

detector with scale dependent pooling and cascaded rejection classifiers, in:
CVPR, 2016, pp. 2129–2137 . 

[26] B. Keni , S. Rainer , Evaluating multiple object tracking performance: the clear
MOT metrics, EURASIP JIVP 1 (2008) 1–8 . 

[27] Y. Li , C. Huang , R. Nevatia , Learning to associate: Hybrid boosted multi-target

tracker for crowded scene, in: CVPR, 2009, pp. 2953–2960 . 
[28] Y. Ban , S. Ba , X. Alameda-Pineda , R. Horaud , Tracking multiple persons based

on a variational bayesian model, in: ECCV Workshops, 2016, pp. 1–8 . 
[29] X. Glorot , Y. Bengio , Understanding the difficulty of training deep feedforward

neural networks, in: AISTATS, 2010, pp. 249–256 . 
[30] W. Choi , Near-online multi-target tracking with aggregated local flow descrip-

tor, in: ICCV, 2015, pp. 3029–3037 . 
[31] L. Chen , H. Ai , Z. Zhuang , C. Shang , Real-time multiple people tracking with

deeply learned candidate selection and person re-identification, in: ICME,

2018, pp. 1–6 . 
[32] H. Zhou , W. Ouyang , J. Cheng , X. Wang , H. Li , Deep continuous conditional

random fields with asymmetric inter-object constraints for online multi-object
tracking, IEEE TCSVT 29 (4) (2018) 1011–1022 . 

[33] C. Kim , F. Li , A. Ciptadi , J.M. Rehg , Multiple hypothesis tracking revisited, in:
ICCV, 2015, pp. 4696–4704 . 

[34] Z. Zhu , Q. Wang , L. Bo , W. Wu , J. Yan , W. Hu , Distractor-aware siamese net-

works for visual object tracking, in: European Conference on Computer Vision,
2018 . 
[35] C. Ma , C. Yang , F. Yang , Y. Zhuang , Z. Zhang , H. Jia , X. Xie , Trajectory factory:
tracklet cleaving and re-connection by deep siamese Bi-GRU for multiple ob-

ject tracking, in: ICME, 2018, pp. 1–6 . 
[36] R. Henschel , Leal-Taixé, D. Cremers , B. Rosenhahn , Fusion of head and ful-

l-body detectors for multi-object tracking, in: CVPR Workshop, 2018, pp. 
1428–1437 . 

[37] E. Levinkov , J. Uhrig , S. Tang , M. Omran , E. Insafutdinov , A. Kirillov , C. Rother ,
T. Brox , B. Schiele , B. Andres , Joint graph decomposition and node labeling:

problem, algorithms, applications, in: CVPR, 2017, pp. 6012–6020 . 

38] Y. Tao , Adaptive spatio-temporal model based multiple object tracking consid-
ering a moving camera, in: ICUV, 2018, pp. 1–6 . 

[39] M. Keuper, S. Tang, Y. Zhongjie, B. Andres, T. Brox, B. Schiele, A multi-cut for-
mulation for joint segmentation and tracking of multiple objects, arXiv: 1607.

06317 (2016). 
[40] A . Sadeghian , A . Alahi , S. Savarese , Tracking the untrackable: learning to track

multiple cues with long-term dependencies, in: ICCV, 2017, pp. 300–311 . 

[41] J. Chen , H. Sheng , Y. Zhang , Z. Xiong , Enhancing detection model for multiple
hypothesis tracking, in: CVPR Workshops, 2017, pp. 2143–2152 . 

[42] E. Bochinski , V. Eiselein , T. Sikora , High-speed tracking-by-detection without
using image information, in: IEEE AVSS, 2017, pp. 1–6 . 

[43] Y.-c. Yoon , A. Boragule , K. Yoon , M. Jeon , Online multi-object tracking with
historical appearance matching and scene adaptive detection filtering, AVSS

(2018) 1–8 . 

ongwei Zhou received the B.S. degree in electronic information and science from
hina University of Mining and Technology, Xuzhou, in 2013, and M.S. degree in

attern recognition and intelligence system from the Nanjing University of Science
nd Technology, Nanjing, in 2016. Currently, he is a Ph.D. student in Institute of

utomation, Chinese Academy of Sciences, Beijing. His research interests include
ulti-object tracking and deep learning. 

enhan Luo is currently working as a senior researcher in the Tencent AI Lab,

hina. His research interests include several topics in computer vision and machine
earning, such as motion analysis (especially object tracking), image/video quality

estoration, reinforcement learning. Before joining Tencent, he received the Ph.D.
egree from Imperial College London, UK, 2016, M.E. degree from Institute of Au-

omation, Chinese Academy of Sciences, China, 2012 and B.E. degree from Huazhong

niversity of Science and Technology, China, 2009. 

iang Wang received the B.S. degree from University of Science and Technology

eijing, China in 2015. Currently, he is a Ph.D. student in Institute of Automation,
hinese Academy of Sciences, Beijing. His research interests include visual object

racking and target segmentation. 

unliang Xing received the B.S. degrees in computer science and mathematics from
i’an Jiaotong University, Xi’an, China, in 2007, and the Ph.D. degree in computer

science from Tsinghua University, Beijing, China, in 2012. He is currently an asso-
ciate professor with the National Laboratory of Pattern Recognition, Institute of Au-

omation, Chinese Academy of Sciences, Beijing, China. Dr. Xing was the recipient of
oogle Ph.D. Fellowship 2011, the Excellent Student Scholarships at Xi’an Jiaotong

University from 2004 to 2007 and at Tsinghua University from 2009 to 2011. He has

published more than 40 papers on international journals and conferences. His cur-
ent research interests mainly focus on computer vision problems related to faces

nd humans. 

eiming Hu received the Ph.D. degree from the Department of Computer Science

nd Engineering, Zhejiang University, in 1998. From April 1998 to March 20 0 0, he

as a postdoctoral research fellow with the Institute of Computer Science and Tech-
ology, Peking University. Now he is a professor in the Institute of Automation, Chi-

ese Academy of Sciences. His research interests include visual surveillance and fil-
ering of Internet objectionable information. 

http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0021
http://arxiv.org/abs/1603.00831
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0035
http://arxiv.org/abs/1607.06317
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30315-0/sbref0039

	Distractor-aware discrimination learning for online multiple object tracking
	1 Introduction
	2 Related work
	3 Proposed online MOT algorithm
	3.1 Distractor-aware discrimination learning
	3.2 Relational attention learning
	3.3 Multi-stage tracking

	4 Experiments
	4.1 Experiment settings
	4.2 Ablation study
	4.3 Evaluation on MOT benchmarks

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


